Меню Рубрики

Ping scanner windows 7

Information Security Squad

stay tune stay secure

8 лучших инструментов сканеров IP для управления сетью

Одной из сложных задач для сетевых администраторов является управление IP-адресомами.

Она становится сложной, когда вы работаете в крупной организации, где подключены сотни сетей.

Управление IP-адресами в электронной таблице не причудливо.

Это становится беспорядочным, когда у вас тысячи IP.

Благодаря следующим инструментам, которые помогут вам сканировать IP-адрес, порт, управлять IP-адресом и многое другое, это станет проще.

1 Free IP Scanner

Легкий автономный IP-сканер способен сканировать сотни компьютеров за секунду.

Он работает на ОС Windows и питается от технологии многопоточного сканирования.

Этот инструмент способен отображать информацию NetBIOS, такую как имя хоста, рабочую группу и т. д.

У вас есть возможность экспортировать результаты в файл.

2 IP Address Manager

Передовой IP-менеджер от SolarWinds упакован множеством функций.

Управление DHCP, DNS и IP с помощью программного обеспечения SolarWinds очень просто.

Некоторые из функций:

  • IP-информация и отслеживание истории
  • Отслеживать IP-адрес автоматически
  • Запланировать сканирование, чтобы обеспечить актуальность данных
  • Возможность управления адресами IPv4 и IPv6
  • Будьте предупреждены, когда образуются конфликты IP или несогласованные записи DNS
  • Мониторинг устройств с несколькими поставщиками, таких как серверы Cisco, Microsoft, ISC DHCP, BIND и DNS-серверы Microsoft с единой платформы
  • vRealize Плагин Orchestrator для автоматизации управления IP-сетями
  • Обнаружение и отслеживание подсети и связанных блоков
  • Найти IP-адрес
  • Делегирование администрирования ИС

Он предлагает API, который упрощает интеграцию с сторонним программным обеспечением.

Вы можете начать его с БЕСПЛАТНОЙ пробной версии, чтобы узнать, соответствует ли вам ваше требование.

3 Angry IP Scanner

Один из известных IP-сканеров с более чем 23 миллионами загрузок позволяет сканировать локальный и интернет-IP-адрес.

Angry IP-сканер – это программное обеспечение с открытым исходным кодом, которое работает на Windows, MAC и Linux.

Источник

Сравнение инструментов сканирования локальной сети

Когда я работал в нескольких государственных организациях кавычкодавом, овощем пентестером, суровые бородатые дяди в свитерах учили меня использовать только Nmap для сканирования сети. Сменив место работы, Добби стал свободен от предрассудков и решил выбрать сканер самостоятельно на основании псевдо-объективных данных сравнения реального функционала популярных сканеров, которые смог найти в сети самостоятельно, или, спросив у коллег, какой их любимый сканер. Собственно, о результатах внутреннего холливара сравнения сетевых сканеров и решил написать статью. Объективность не гарантирую, но постарался сделать колличественный анализ. Кому интересно, что из этого вышло, добро пожаловать под кат.

Старый и опытный волк безопасник предложил свой любимый и привычный консольный Nmap. Ещё один наш выходец из «госухи», combonik, говорил, что разницы нету, опенсорсный или вендорский, главное — веб-интерфейс для работы. Ещё наш погонщик менеджер сказал, что вендорские сканеры — самые лучшие, аргументируя свои слова тем, что такие сканеры имеют постоянную поддержку, удобный интерфейс для работы и постоянные обновления.

Дабы сгладить наши противоречия, было решено провести блиц-тестирование сетевых сканеров уязвимостей. Холивар среди пентестеров Hacken привел нас к новой задаче — проведению сравнительной характеристики по результатам сканирования. Для проведения сравнения эффективности сканирования было выбрано четыре сканера: Rapid7 Nexpose, Tenable Nessus, OpenVAS 9 и Nmap. Их выбрали на основании аналитики интернет-публикаций и личного опыта. Лично я делал ставку на Nessus, но увы, не угадал.

Rapid7 Nexpose – это сканер уязвимостей, который выполняет активное сканирование IT-инфраструктуры на наличие ошибочных конфигураций, дыр, вредоносных кодов, и предоставляет рекомендации по их устранению. Под анализ попадают все компоненты инфраструктуры, включая сети, операционные системы, базы данных и web-приложения. По результатам проверки Rapid7 Nexpose в режиме приоритетов классифицирует обнаруженные угрозы и генерирует отчеты по их устранению. [2]

Tenable Nessus Scanner – это сканер, предназначенный для оценки текущего состояния защищённости традиционной ИТ-инфраструктуры, мобильных и облачных сред, контейнеров и т.д. По результатам сканирования выдаёт отчёт о найденных уязвимостях. Рекомендуется использовать, как составную часть Nessus Security Center. [3]

OpenVAS — это сканер уязвимостей с открытым исходным кодом. OpenVAS предназначен для активного мониторинга узлов вычислительной сети на предмет наличия проблем, связанных с безопасностью, оценки серьезности этих проблем и для контроля их устранения. Активный мониторинг означает, что OpenVAS выполняет какие-то действия с узлом сети: сканирует открытые порты, посылает специальным образом сформированные пакеты для имитации атаки или даже авторизуется на узле, получает доступ к консоли управления, и выполняет на нем команды. Затем OpenVAS анализирует собранные данные и делает выводы о наличии каких-либо проблем с безопасностью. Эти проблемы, в большинстве случаев касаются установленного на узле необновленного ПО, в котором имеются известные и описанные уязвимости, или же небезопасно настроенного ПО. [1,6]

Nmap — свободная утилита, предназначенная для разнообразного настраиваемого сканирования IP-сетей с любым количеством объектов, определения состояния объектов сканируемой сети (портов и соответствующих им служб). Изначально программа была реализована для систем UNIX, но сейчас доступны версии для множества операционных систем.[4,5]

Тестовая среда

Для проведения тестирования я собрал тестовую сеть на VMware Workstation 12 Pro в схему, которая представлена на рис. 1.

  • Windows 7 со всеми установленными обновлениями, запущенным приложением XAMPP, развёрнутыми сервисами MySQL и Apache. Также развёрнута тестовая система DVWA.
  • Metasploitable 2 – операционная система с предустановленными уязвимыми сервисами и приложениями, которая используется для тестирования.
  • Ubuntu 16.04 c установленным IDS Suricata [10] и сконфигурированным iptables [9].
  • Kali Linux — дистрибутив Linux, который используется для тестирования на проникновения.
  • Перечень уязвимых сервисов в Metasploitable 2 приведены в таблице 1.

Таблица 1

Service Port Status
Vsftpd 2..four 21 Open
OpenSSH four.7p1 Debian 8ubuntu 1 (protocol 2.zero) 22 Open
Linux telnetd service 23 Open
Postfix smtpd 25 Open
ISC BIND 9.four.2 53 Open
Apache httpd 2.2.eight Ubuntu DAV/2 80 Open
A RPCbind service 111 Open
Samba smbd .X 139, 445 Open
r companies 512, 513, 514 Open
GNU Classpath grmiregistry 1099 Open
Metasploitable root shell 1524 Open
A NFS service 2048 Open
ProFTPD 1..1 2121 Open
MySQL 5.zero.51a-3ubuntu5 3306 Open
PostgreSQL DB eight..zero — eight..7 5432 Open
VNC protocol v1. 5900 Open
X11 service 6000 Open
Unreal ircd 6667 Open
Apache Jserv protocol 1. 8009 Open
Apache Tomcat/Coyote JSP engine 1.1 8180 Open

На практике, когда проводится сканирование внутренних сетей на межсетевом экране и IPS, создаются правила, исключающие блокировку сканирования. Поэтому Suricata использовалась в режиме детектирования, и были написаны разрешающие правила на межсетевом экране.

Nessus Scanner запускался в режиме «Basic Network Scanning». [3]
Rapid 7 Nexpose запускался в режиме «Full audit without Web Spider». [2]
OpenVAS 9 запускался в режиме «default». [1,6]
Nmap запускался двумя командами: [4,5]

  • nmap -sV -T4 -O -F —version-light 192.168.234.130-131
  • nmap -Pn —script vuln 192.168.234.130-131

Результаты тестирования

Nexpose обнаружил 527 уязвимости (см. Диаграмма 1), из них:
Репорт

167 – получили статус “critical” — уязвимости необходимо закрывать в первую очередь.
349 – получили статус “severe” — уязвимости сложны в эксплуатации, но могут привести к тяжёлым последствиям.
46 – получили статус “moderate” — найденные уязвимости могут предоставить атакующему информацию о системе, которую он может применить при проведении атаки.

Найдены уязвимости не только тестированных систем, но и потенциальные уязвимости в системе виртуализации.

Tenable Nessus обнаружил 168 уязвимостей (см. Диаграмма 2), из них:
Репорт

3 – получили статус “critical”
9 – получили статус “high”
33 – получили статус “medium”
5 – получили статус “low”
118 получили статус “info”

Уязвимости уровня “critical” и “high” необходимо закрывать в первую очередь.
Уязвимости уровня “medium” — сложны в эксплуатации, но при должной проработке могут нанести ущерб.
Уязвимости уровня “low” и “info” — могут предоставить атакующему информацию о системе, которую он может применить при проведении атаки через другие векторы.

OpenVAS 9 обнаружил 53 уязвимости (см. Диаграмма 3), из них:
Репорт
Результаты срабатывания IDS

16 – получили статус “high”
33 – получили статус “medium”
4 – получили статус “low”

Уязвимости уровня “high” необходимо закрывать в первую очередь.
Уязвимости уровня “medium” — сложны в эксплуатации, но при должной проработке могут нанести ущерб.
Уязвимости уровня “low” могут предоставить атакующему информацию о системе, которую он может применить при проведении атаки через другие векторы.

Отдельно следует отметить полученные результаты с помощью сканера Nmap. Сканирование проводилось двумя командами, которые описывались выше. Результатом выполнения стал вывод информации об операционной системе, открытых сервисах и найденные возможные уязвимые сервисы и ссылки.

Использование скрипта “vuln” определило следующие типы уязвимостей:

Выводы

Для формирования выводов я применил количественный метод оценки по суммарному количеству найденных уязвимостей. В результате выяснилось, что наибольшую глубину сканирования проводит Nexpose. Довольно слабо отработал Nessus, так как в режиме сканирования сети выдал много служебных данных о системах и сервисах, которые только дают информацию для аналитики. С очень слабой стороны показал себя сканнер OpenVAS 9 с последними обновлениями. Отдельного слова требует Nmap – очень хороший инструмент для проведения аналитического тестирования с возможностью расширения с помощью NSE-скриптов.

Во время тестирования IDS Suricata обнаружила сканнеры NMap и OpenVAS.

Данное тестирование не является каноничным, как например, тесты Gartner или NSS Labs. Но не смотря на это, думаю, статья будет актуальна для специалистов в сфере администрирования систем и технического аудита.

P.S. А для чего это всё делалось?

Необходимо было принять на вооружение выбрать сканер для компании Hacken. Кроме того, проведение сканирования внутренней сети регламентировано стандартами управления информационной безопасности в коммерчиских организациях, банковской, энергетической и прочих сферах деятельности. Сканирование сети необходимо проводить не только для получения сертификации для организации, но и для управления уязвимостями в информационно-телекоммуникационной системе, контроля обновления операционных систем и другие не менее важные задачи по управлению информационной безопасностью. [8, 11]

Источник

Прочитай и сделай: проводим сканирование сети самостоятельно

В свете последних событий в мире много компаний перешли на удаленный режим работы. При этом для сохранения эффективности бизнес-процессов на сетевые периметры были вынесены приложения, которые не предназначены для прямого размещения на периметре, например внутрикорпоративные веб-приложения, на эту тему недавно было наше исследование . Если между службами ИТ и ИБ нет тесной связи, возникают ситуации, когда на сетевом периметре появилось бизнес-приложение, о котором у службы ИБ нет информации.

Решением подобных проблем может быть периодическое исследование периметра организации. Для решения задачи подходят сетевые сканеры, поисковики по интернету вещей, сканеры уязвимостей и услуги по анализу защищенности. Далее в статье рассмотрим виды и параметры сканирования, их преимущества и недостатки, инструменты, которые часто используются, и методы обработки результатов.

Ping-сканирование

Первый рассматриваемый вид сканирования — ping-сканирование. Основная задача — обнаружить «живые» узлы в сети. Под ping-сканированием понимают широковещательную рассылку пакетов ICMP. Сканер рассылает пакеты типа Echo REQUEST по указанным IP-адресам и ожидает в ответ пакеты типа Echo REPLY. Если ответ получен, считается, что узел присутствует в сети по указанному IP-адресу.

Протокол ICMP широко используется администраторами сетей для диагностики, поэтому, чтобы избежать разглашения информации об узлах, важна корректная настройка средств защиты периметра. Для корпоративных сетей такой вид сканирования не релевантен при внешнем сканировании, потому что большинство средств защиты по умолчанию блокируют протокол ICMP либо ответы по этому протоколу. При отсутствии нестандартных задач в корпоративной сети на выход, как правило, разрешены следующие виды ICMP-сообщений: Destination Unreachable, Echo REQUEST, Bad IP header, а на вход разрешены Echo REPLY, Destination Unreachable, Source Quench, Time Exceeded, Bad IP header. В локальных сетях не такая строгая политика безопасности, и злоумышленники могут применять этот способ, когда уже проникли в сеть, однако это легко детектируется.

Сканирование портов

Объединим TCP-сканирование и UDP-сканирование под общим названием — сканирование портов. Сканирование этими методами определяет доступные порты на узлах, а затем на основе полученных данных делается предположение о типе используемой операционной системы или конкретного приложения, запущенного на конечном узле. Под сканированием портов понимают пробные попытки подключения к внешним узлам. Рассмотрим основные методы, реализованные в автоматизированных сетевых сканерах:

Метод TCP SYN — наиболее популярен, используется в 95% случаев. Его называют сканированием с установкой полуоткрытого соединения, так как соединение не устанавливается до конца. На исследуемый порт посылается сообщение SYN, затем идет ожидание ответа, на основании которого определяется статус порта. Ответы SYN/ACK говорят о том, что порт прослушивается (открыт), а ответ RST говорит о том, что не прослушивается.
Если после нескольких запросов не приходит никакого ответа, то сетевой трафик до порта узла назначения фильтруется средствами межсетевого экранирования (далее будем использовать термин «порт фильтруется»). Также порт помечается как фильтруемый, если в ответ приходит сообщение ICMP с ошибкой достижимости (Destination Unreachable) и определенными кодами и флагами.

Метод TCP CONNECT менее популярен, чем TCP SYN, но все-таки часто встречается на практике. При реализации метода TCP CONNECT производится попытка установить соединение по протоколу TCP к нужному порту с процедурой handshake. Процедура заключается в обмене сообщениями для согласования параметров соединения, то есть служебными сообщениями SYN, SYN/ACK, ACK, между узлами. Соединение устанавливается на уровне операционной системы, поэтому существует шанс, что оно будет заблокировано средством защиты и попадет в журнал событий.

UDP-сканирование медленнее и сложнее, чем TCP-сканирование. Из-за специфики сканирования UDP-портов о них часто забывают, ведь полное время сканирование 65 535 UDP-портов со стандартными параметрами на один узел занимает у большинства автоматизированных сканеров до 18 часов. Это время можно уменьшить за счет распараллеливания процесса сканирования и рядом других способов. Следует уделять внимание поиску UDP-служб, потому что UDP-службы реализуют обмен данными с большим числом инфраструктурных сервисов, которые, как правило, вызывают интерес злоумышленников.

На сетевых периметрах часто встречаются UDP-сервисы DNS (53), NTP (123), SNMP (161), VPN (500, 1194, 4500), RDG (3391). Реже встречаются сервисные службы типа echo (7), discard (9), chargen (19), а также DAYTIME (13), TFTP (69), SIP (5060), сервисы NFS (2049), RPC (111, 137-139, 761 и др.), СУБД (1434).

Для определения статуса порта посылается пустой UDP-заголовок, и если в ответ приходит ошибка достижимости ICMP Destination Unreachable с кодом Destination port unreachable, это значит, что порт закрыт; другие ошибки достижимости ICMP (Destination host unreachable, Destination protocol unreachable, Network administratively prohibited, Host administratively prohibited, Communication administratively prohibited) означают, что порт фильтруется. Если порт отвечает UDP-пакетом, значит, он открыт. Из-за специфики UDP и потери пакетов запросы повторяются несколько раз, обычно три и более. Как правило, если ответ не получен, статус порта определяется в состоянии «открыт» или «фильтруется», поскольку непонятно, что стало причиной — блокировка трафика средством защиты или потеря пакетов.

Для точности определения статуса порта и самой службы, запущенной на UDP-порте, используется специальная полезная нагрузка, наличие которой должно вызвать определенную реакцию у исследуемого приложения.

Редкие методы сканирования

Методы, которые практически не используются:

  • TCP ACK,
  • TCP NULL, FIN, Xmas,
  • «Ленивое сканирование».

Прямое назначение метода ACK-сканирования — выявить правила средств защиты, а также определить фильтруемые порты. В пакете запроса при таком типе сканирования установлен только ACK-флаг. Открытые и закрытые порты вернут RST-пакет, так как порты достижимы для ACK-пакетов, но состояние неизвестно. Порты, которые не отвечают или посылают в ответ ICMP-сообщение Destination Unreachable с определенными кодами считаются фильтруемыми.

Методы TCP NULL, FIN, Xmas заключаются в отправке пакетов с отключенными флагами в заголовке TCP. При NULL-сканировании не устанавливаются никакие биты, при FIN-сканировании устанавливается бит TCP FIN, а в Xmas-сканировании устанавливаются флаги FIN, PSH и URG. Методы основаны на особенности спецификации RFC 793, согласно которой при закрытом порте входящий сегмент, не содержащий RST, повлечет за собой отправку RST в ответ. Когда порт открыт, ответа не будет. Ошибка достижимости ICMP означает, что порт фильтруется. Эти методы считаются более скрытными, чем SYN-сканирование, однако и менее точны, потому что не все системы придерживаются RFC 793.

«Ленивое сканирование» является самым скрытным из методов, поскольку для сканирования используется другой узел сети, который называется зомби-узлом. Метод применяется злоумышленниками для разведки. Преимущество такого сканирования в том, что статус портов определяется для зомби-узла, поэтому, используя разные узлы, можно установить доверительные связи между узлами сети. Полное описание метода доступно по ссылке .

Процесс выявления уязвимостей

Под уязвимостью будем понимать слабое место узла в целом или его отдельных программных компонентов, которое может быть использовано для реализации атаки. В стандартной ситуации наличие уязвимостей объясняется ошибками в программном коде или используемой библиотеке, а также ошибками конфигурации.

Уязвимость регистрируется в MITRE CVE , а подробности публикуются в NVD . Уязвимости присваивается идентификатор CVE, а также общий балл системы оценки уязвимости CVSS, отражающий уровень риска, который уязвимость представляет для конечной системы. Подробно об оценке уязвимостей написано в нашей статье . Централизованный список MITRE CVE — ориентир для сканеров уязвимостей, ведь задача сканирования — обнаружить уязвимое программное обеспечение.

Ошибка конфигурации — тоже уязвимость, но подобные уязвимости нечасто попадают в базу MITRE; впрочем, они все равно попадают в базы знаний сканеров с внутренними идентификаторами. В базы знаний сканеров попадают и другие типы уязвимостей, которых нет в MITRE CVE, поэтому при выборе инструмента для сканирования важно обращать внимание на экспертизу его разработчика. Сканер уязвимостей будет опрашивать узлы и сравнивать собранную информацию с базой данных уязвимостей или списком известных уязвимостей. Чем больше информации у сканера, тем точнее результат.

Рассмотрим параметры сканирования, виды сканирования и принципы обнаружения уязвимостей при помощи сканеров уязвимостей.

Параметры сканирования

За месяц периметр организации может неоднократно поменяться. Проводя сканирование периметра в лоб можно затратить время, за которое результаты станут нерелевантными. При сильном увеличении скорости сканирования сервисы могут «упасть». Надо найти баланс и правильно выбрать параметры сканирования. От выбора зависят потраченное время, точность и релевантность результатов. Всего можно сканировать 65 535 TCP-портов и столько же UDP-портов. По нашему опыту, среднестатистический периметр компании, который попадает в пул сканирования, составляет две полных сети класса «С» с маской 24.

  • количество портов,
  • глубина сканирования,
  • скорость сканирования,
  • параметры определения уязвимостей.

По количеству портов сканирование можно разделить на три вида — сканирование по всему списку TCP- и UDP-портов, сканирование по всему списку TCP-портов и популярных UDP-портов, сканирование популярных TCP- и UDP-портов. Как определить популярности порта? В утилите nmap на основе статистики, которую собирает разработчик утилиты, тысяча наиболее популярных портов определена в конфигурационном файле. Коммерческие сканеры также имеют преднастроенные профили, включающие до 3500 портов.

Если в сети используются сервисы на нестандартных портах, их также стоит добавить в список сканируемых. Для регулярного сканирования мы рекомендуем использовать средний вариант, при котором сканируются все TCP-порты и популярные UDP-порты. Такой вариант наиболее сбалансирован по времени и точности результатов. При проведении тестирования на проникновение или полного аудита сетевого периметра рекомендуется сканировать все TCP- и UDP-порты.

Важная ремарка: не получится увидеть реальную картину периметра, сканируя из локальной сети, потому что на сканер будут действовать правила межсетевых экранов для трафика из внутренней сети. Сканирование периметра необходимо проводить с одной или нескольких внешних площадок; в использовании разных площадок есть смысл, только если они расположены в разных странах.

Под глубиной сканирования подразумевается количество данных, которые собираются о цели сканирования. Сюда входит операционная система, версии программного обеспечения, информация об используемой криптографии по различным протоколам, информация о веб-приложениях. При этом имеется прямая зависимость: чем больше хотим узнать, тем дольше сканер будет работать и собирать информацию об узлах.

При выборе скорости необходимо руководствоваться пропускной способностью канала, с которого происходит сканирование, пропускной способностью канала, который сканируется, и возможностями сканера. Существуют пороговые значения, превышение которых не позволяет гарантировать точность результатов, сохранение работоспособности сканируемых узлов и отдельных служб. Не забывайте учитывать время, за которое необходимо успеть провести сканирование.

Параметры определения уязвимостей — наиболее обширный раздел параметров сканирования, от которого зависит скорость сканирования и объем уязвимостей, которые могут быть обнаружены. Например, баннерные проверки не займут много времени. Имитации атак будут проведены только для отдельных сервисов и тоже не займут много времени. Самый долгий вид — веб-сканирование.

Полное сканирование сотни веб-приложений может длиться неделями, так как зависит от используемых словарей и количества входных точек приложения, которые необходимо проверить. Важно понимать, что из-за особенностей реализации веб-модулей и веб-сканеров инструментальная проверка веб-уязвимостей не даст стопроцентной точности, но может очень сильно замедлить весь процесс. Веб-сканирование лучше проводить отдельно от регулярного, тщательно выбирая приложения для проверки.

Для глубокого анализа использовать инструменты статического и динамического анализа приложений или услуги тестирования на проникновение. Мы не рекомендуем использовать опасные проверки при проведении регулярного сканирования, поскольку существует риск нарушения работоспособности сервисов. Подробно о проверках см. далее, в разделе про работу сканеров.

Инструментарий

Если вы когда-нибудь изучали журналы безопасности своих узлов, наверняка замечали, что интернет сканирует большое количество исследователей, онлайн-сервисы, ботнеты. Подробно описывать все инструменты нет смысла, перечислим некоторые сканеры и сервисы, которые используются для сканирования сетевых периметров и интернета. Каждый из инструментов сканирования служит своей цели, поэтому при выборе инструмента должно быть понимание, зачем он используется. Иногда правильно применять несколько сканеров для получения полных и точных результатов.

Сетевые сканеры: Masscan , Zmap , nmap . На самом деле утилит для сканирования сети намного больше, однако для сканирования периметра вряд ли вам понадобятся другие. Эти утилиты позволяют решить большинство задач, связанных со сканированием портов и служб.

Поисковики по интернету вещей, или онлайн-сканеры — важные инструменты для сбора информации об интернете в целом. Они предоставляют сводку о принадлежности узлов к организации, сведения о сертификатах, активных службах и иную информацию. С разработчиками этого типа сканеров можно договориться об исключении ваших ресурсов из списка сканирования или о сохранении информации о ресурсах только для корпоративного пользования. Наиболее известные поисковики: Shodan , Censys , Fofa .

Для решения задачи не обязательно применять сложный коммерческий инструмент с большим числом проверок: это излишне для сканирования пары «легких» приложений и сервисов. В таких случаях будет достаточно бесплатных сканеров. Бесплатных веб-сканеров много, и тяжело выделить наиболее эффективные, здесь выбор, скорее, дело вкуса; наиболее известные: Skipfish , Nikto , ZAP , Acunetix , SQLmap .

При тщательном ручном анализе будут полезны инструменты Burp Suite, Metasploit и OpenVAS. Недавно вышел сканер Tsunami компании Google.
Отдельной строкой стоит упомянуть об онлайн-поисковике уязвимостей Vulners. Это большая база данных контента информационной безопасности, где собирается информация об уязвимостях с большого количества источников, куда, кроме типовых баз, входят вендорские бюллетени безопасности, программы bug bounty и другие тематические ресурсы. Ресурс предоставляет API, через который можно забирать результаты, поэтому можно реализовать баннерные проверки своих систем без фактического сканирования здесь и сейчас. Либо использовать Vulners vulnerability scanner, который будет собирать информацию об операционной системе, установленных пакетах и проверять уязвимости через API Vulners. Часть функций ресурса платные.

Коммерческие сканеры уязвимостей

Все коммерческие системы защиты поддерживают основные режимы сканирования, которые описаны ниже, интеграцию с различными внешними системами, такими как SIEM-системы, patch management systems, CMBD, системы тикетов. Коммерческие сканеры могут присылать оповещения по разным критериям, а поддерживают различные форматы и типы отчетов. Все разработчики систем сканирования используют общие базы уязвимостей, а также собственные базы знаний, которые постоянно обновляются на основе исследований.

Основные различия между коммерческими сканерами — поддерживаемые стандарты, лицензии государственных структур, количество и качество реализованных проверок, а также направленность на тот или иной рынок сбыта, например поддержка сканирования отечественного ПО. Статья не призвана представить качественное сравнение сканеров уязвимостей. На наш взгляд, у каждого сканера есть свои преимущества и недостатки. Для анализа защищенности подходят все перечисленные средства, можно использовать их комбинации: Qualys , Max Patrol 8 , Tenable SecurityCenter .

Как работают сканеры уязвимостей

Режимы сканирования реализованы по трем схожим принципам:

  • Аудит, или режим белого ящика.
  • Комплаенс, или проверка на соответствие техническим стандартам.
  • Пентест, или режим черного ящика.

Основной интерес при сканировании периметра представляет режим черного ящика, потому что он моделирует действия внешнего злоумышленника, которому ничего не известно об исследуемых узлах. Ниже представлена краткая справка обо всех режимах.

Аудит — режим белого ящика, который позволяет провести полную инвентаризацию сети, обнаружить все ПО, определить его версии и параметры и на основе этого сделать выводы об уязвимости систем на детальном уровне, а также проверить системы на использование слабых паролей. Процесс сканирования требует определенной степени интеграции с корпоративной сетью, в частности необходимы учетные записи для авторизации на узлах.

Авторизованному пользователю, в роли которого выступает сканер, значительно проще получать детальную информацию об узле, его программном обеспечении и конфигурационных параметрах. При сканировании используются различные механизмы и транспорты операционных систем для сбора данных, зависящие от специфики системы, с которой собираются данные. Список транспортов включает, но не ограничивается WMI, NetBios, LDAP, SSH, Telnet, Oracle, MS SQL, SAP DIAG, SAP RFC, Remote Engine с использованием соответствующих протоколов и портов.

Комплаенс — режим проверки на соответствие каким-либо стандартам, требованиям или политикам безопасности. Режим использует схожие с аудитом механизмы и транспорты. Особенность режима — возможность проверки корпоративных систем на соответствие стандартам, которые заложены в сканеры безопасности. Примерами стандартов являются PCI DSS для платежных систем и процессинга, СТО БР ИББС для российских банков, GDPR для соответствия требованиям Евросоюза. Другой пример — внутренние политики безопасности, которые могут иметь более высокие требования, чем указанные в стандартах. Кроме того, существуют проверки установки обновлений и другие пользовательские проверки.

Пентест — режим черного ящика, в котором у сканера нет никаких данных, кроме адреса цели или доменного имени. Рассмотрим типы проверок, которые используются в режиме:

  • баннерные проверки,
  • имитация атак,
  • веб-проверки,
  • проверки конфигураций,
  • опасные проверки.

Баннерные проверки основываются на том, что сканер определяет версии используемого программного обеспечения и операционной системы, а затем сверяет эти версии со внутренней базой уязвимостей. Для поиска баннеров и версий используются различные источники, достоверность которых также различается и учитывается внутренней логикой работы сканера. Источниками могут быть баннеры сервиса, журналы, ответы приложений и их параметры и формат. При анализе веб-серверов и приложений проверяется информация со страниц ошибок и запрета доступа, анализируются ответы этих серверов и приложений и другие возможные источники информации. Сканеры помечают уязвимости, обнаруженные баннерной проверкой, как подозрения на уязвимость или как неподтвержденную уязвимость.

Имитация атаки — это безопасная попытка эксплуатации уязвимости на узле. Имитации атаки имеют низкий шанс на ложное срабатывание и тщательно тестируются. Когда сканер обнаруживает на цели сканирования характерный для уязвимости признак, проводится эксплуатация уязвимости. При проверках используют методы, необходимые для обнаружения уязвимости; к примеру, приложению посылается нетипичный запрос, который не вызывает отказа в обслуживании, а наличие уязвимости определяется по ответу, характерному для уязвимого приложения.

Другой метод: при успешной эксплуатации уязвимости, которая позволяет выполнить код, сканер может направить исходящий запрос типа PING либо DNS-запрос от уязвимого узла к себе. Важно понимать, что не всегда уязвимости удается проверить безопасно, поэтому зачастую в режиме пентеста проверки появляются позже, чем других режимах сканирования.

Веб-проверки — наиболее обширный и долгий вид проверок, которым могут быть подвергнуты обнаруженные веб-приложения. На первом этапе происходит сканирование каталогов веб-приложения, обнаруживаются параметры и поля, где потенциально могут быть уязвимости. Скорость такого сканирования зависит от используемого словаря для перебора каталогов и от размера веб-приложения.

На этом же этапе собираются баннеры CMS и плагинов приложения, по которым проводится баннерная проверка на известные уязвимости. Следующий этап — основные веб-проверки: поиск SQL Injection разных видов, поиск недочетов системы аутентификации и хранения сессий, поиск чувствительных данных и незащищенных конфигураций, проверки на XXE Injection, межсайтовый скриптинг, небезопасную десериализацию, загрузку произвольных файлов, удаленное исполнение кода и обход пути. Список может быть шире в зависимости от параметров сканирования и возможностей сканера, обычно при максимальных параметрах проверки проходят по списку OWASP Top Ten .

Проверки конфигураций направлены на выявление ошибок конфигураций ПО. Они выявляют пароли по умолчанию либо перебирают пароли по короткому заданному списку с разными учетными записями. Выявляют административные панели аутентификации и управляющие интерфейсы, доступные принтеры, слабые алгоритмы шифрования, ошибки прав доступа и раскрытие конфиденциальной информации по стандартным путям, доступные для скачивания резервные копии и другие подобные ошибки, допущенные администраторами IT-систем и систем ИБ.

В число опасных проверок попадают те, использование которых потенциально приводит к нарушению целостности или доступности данных. Сюда относят проверки на отказ в обслуживании, варианты SQL Injection с параметрами на удаление данных или внесение изменений. Атаки перебора паролей без ограничений попыток подбора, которые приводят к блокировке учетной записи. Опасные проверки крайне редко используются из-за возможных последствий, однако поддерживаются сканерами безопасности как средство эмуляции действий злоумышленника, который не будет переживать за сохранность данных.

Сканирование и результаты

Мы рассмотрели основные методы сканирования и инструменты, перейдем к вопросу о том, как использовать эти знания на практике. Для начала требуется ответить на вопрос, что и как необходимо сканировать. Для ответа на этот вопрос необходимо собрать информацию о внешних IP-адресах и доменных именах, которые принадлежат организации. По нашему опыту, лучше разделять цели сканирования на инвентаризацию и определение уязвимостей.

Инвентаризационное сканирование можно проводить гораздо чаще, чем сканирование на уязвимости. При инвентаризации хорошей практикой является обогащение результатов информацией об администраторе сервиса, внутреннем IP-адресе сервиса, если используется NAT, а также о важности сервиса и его назначении. Информация в будущем поможет оперативно устранять инциденты, связанные с обнаружением нежелательных или уязвимых сервисов. В идеальном случае в компании есть процесс и политика размещения сервисов на сетевом периметре, в процессе участвуют службы ИТ и ИБ.

Даже при таком подходе присутствует вероятность ошибок по причинам, связанным с человеческим фактором и различными техническими сбоями, которые приводят к появлению нежелательных сервисов на периметре. Простой пример: на сетевом устройстве Check Point написано правило, которое транслирует порт 443 из внутренней сети на периметр. Сервис, который там был, устарел и выведен из эксплуатации. Службе ИТ об этом не сообщили, соответственно правило осталось. В таком случае на периметре может оказаться аутентификация в административную панель устройства Check Point либо другой внутренний сервис, который не планировали там размещать. При этом формально картина периметра не менялась и порт доступен.

Чтобы обнаружить подобные изменения, необходимо сканировать периодически и применять дифференциальное сравнение результатов, тогда будет заметно изменение баннера сервиса, которое привлечет внимание и приведет к разбору инцидента.

Устранение уязвимостей

Первым шагом к правильной технической реализации процесса устранения уязвимостей является грамотное представление результатов сканирования, с которыми придется работать. Если используется несколько разнородных сканеров, правильнее всего будет анализировать и объединять информацию по узлам в одном месте. Для этого рекомендуется использовать аналитические системы, где также будет храниться вся информация об инвентаризации.
Базовым способом для устранения уязвимости является установка обновлений. Можно использовать и другой способ — вывести сервис из состава периметра (при этом все равно необходимо установить обновления безопасности).

Можно применять компенсирующие меры по настройке, то есть исключать использование уязвимого компонента или приложения. Еще вариант — использовать специализированные средства защиты, такие как IPS или application firewall. Конечно, правильнее не допускать появления нежелательных сервисов на сетевом периметре, но такой подход не всегда возможен в силу различных обстоятельств, в особенности требований бизнеса.

Приоритет устранения уязвимостей

Приоритет устранения уязвимостей зависит от внутренних процессов в организации. При работе по устранению уязвимостей для сетевого периметра важно четкое понимание, для чего сервис находится на периметре, кто его администрирует и кто является его владельцем. В первую очередь можно устранять уязвимости на узлах, которые отвечают за критически важные бизнес-функции компании. Естественно, такие сервисы нельзя вывести из состава периметра, однако можно применить компенсирующие меры или дополнительные средства защиты. С менее значимыми сервисами проще: их можно временно вывести из состава периметра, не спеша обновить и вернуть в строй.

Другой способ — приоритет устранения по опасности или количеству уязвимостей на узле. Когда на узле обнаруживается 10–40 подозрений на уязвимость от баннерной проверки — нет смысла проверять, существуют ли они там все, в первую очередь это сигнал о том, что пора обновить программное обеспечение на этом узле. Когда возможности для обновления нет, необходимо прорабатывать компенсирующие меры. Если в организации большое количество узлов, где обнаруживаются уязвимые компоненты ПО, для которых отсутствуют обновления, то пора задуматься о переходе на программного обеспечение, еще находящееся в цикле обновления (поддержки). Возможна ситуация, когда для обновления программного обеспечения сначала требуется обновить операционную систему.
Итоги

Всю информацию о сервисах и службах на вашем сетевом периметре можете получить не только вы, но и любой желающий из интернета. С определенной точностью возможно определить уязвимости систем даже без сканирования. Для снижения рисков возникновения инцидентов информационной безопасности необходимо следить за своим сетевым периметром, вовремя прятать или защищать нежелательные сервисы, а также устанавливать обновления.

Неважно, организован процесс собственными силами или с привлечением сторонних экспертов, оказывающих услуги по контролю периметра или анализу защищенности. Самое главное — обеспечить контроль периметра и устранение уязвимостей на регулярной основе.

Автор: Максим Федотов, старший специалист отдела онлайн-сервисов, PT Expert Security Center, Positive Technologies

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

  • Ping monitor gadget windows 7
  • Ping cmd windows 7
  • Ping allow windows firewall
  • Pim backup для windows 7
  • Pilgrim education для windows