Меню Рубрики

Named pipes c linux

IPC: Using of named pipes in c++ between two programs

I’m trying to realise a IPC between two different programs running on the same machine (in my case its a CentOS7). To have just a kind of loose coupling I decided to use a named pipe for the IPC. Therefore I’m was playing with the following example and ran into different problems.

Creating and writing into the pipe:

I feel like named pipes are pretty unflexible in its behavior I figured out with my test programs. First of all if no reading process is attached to the fifo pipe all messages except of the last one written to the pipe get lost (or generally speaking only the last message can be read after the reading process is attached to the pipe). If you write multiple messages into the pipe all messages betweem the reading (e.g. polled) will be interpreted as one single message (I’m aware that they can be splitted by \0).

The main goals for the named pipe is a) system logs and b) kind of user authentication. The asynchronous of named pipes fits perfectly to my need. But anyway, I’m not sure if named pipes are the best solution for IPC between different programs. Also I’m not sure if the behavior descripted above is normal or if I’m using named pipe in a wrong way. I also thought about sockets but then I will run into huge blocking problems.

Источник

C++ Linux named pipe hanging on open() with O_WRONLY

This is my simple code that opens a named pipe, writes a string to it, and then closes the pipe. The pipe is created in a another function, as mentioned below.

but the call to open() hangs. I’ve made sure that there is no other process using the fifo «jobqueue» at the time of calling and the file permissions for the queue once it’s created are set prwxrwxr-x (I’m just using mkfifo(ipcnm, 0777) to create the pipe.

I thought at first that it was a problem the that group o is missing w permissions on this pipe, so i manually changed them with chmod and it still hangs, as «queue opened» never gets printed. Nor does the error message for perror(«open»);

2 Answers 2

When you open a FIFO for writing, the writer is blocked until there is a reader.

You are probably missing the reader.

You cannot write to a pipe, then close it, and then have the reader come along later. Such storage semantics is accomplished by using a regular file.

Pipes are an inter-process communication mechanism; a pipe created by opening a FIFO is similar to the object returned by the pipe POSIX C library function, except that pipe returns an object which is already prepared for I/O, since there are two descriptors: opposite ends open for opposite directions of I/O. Whereas a FIFO’s endpoints are separately opened one at a time.

The FIFO object in the filesystem is only a contact point which allows multiple processes to attach to the same pipe.

Initially, no pipe object exists. When the first process executes an open on the FIFO object in the filesystem, a pipe is created. Any additional open requests from the same process or another attach to the same pipe object held in the kernel. I/O cannot take place until the pipe is opened at least once for reading and at least once for writing. The actual pipe I/O goes through the kernel; it is not stored in the filesystem. When all processes close the pipe, the object goes away.

A FIFO could be designed such that I/O can begin before any process has the object open for reading. That is to say, a write request could be allowed to proceed and then block only when the pipe fills up. That design would have issues. For instance, what if the write is small, so that the pipe does not fill up? The writer will write the data and proceed in its execution. If it simply exits before a reader has read the data, the data has disappeared forever! The blocking behavior ensures that a reader is there to catch the data; when the writer is unblocked, it can be sure that a reader has the pipe open, and so it can safely close its end of the pipe without the data being lost. A design which does not block writes even when no reader is available would have to keep the pipe object around inside the kernel even when no process has it open, so that a writer can open a pipe, put data in it, then go away, and later a reader can pick up the data. Or else the design would have to provide, to the writer, a blocking close (similarly to SO_LINGER -arranged behavior on a socket) which waits for previously written data to be removed.

Источник

named pipes в Unix

Я давно читал про них, ещё когда учился основам юникс, но как-то не было нужды с ними работать. И, вот, нужда возникла.

Некая программа (допустим, foo) не умеет писать вывод в stdout, только в файл. Даже «-» в качестве имени файла всего лишь создаёт файл с названием «-» [большинство умных программ под unix знают, что одиночный минус вместо имени файла означает вывод в stdout]. Аналогично она отвергает и /dev/stdout.

Другая же программа, обрабатывающая результаты первой, допустим, bar, читает из stdin и пишет в stdout. (если быть точным, первое — это трейсер специального вида, дающий двоичный дамп, а второе — конвертор, печатающий их же в человекочитаемом виде).

Нужно их объединить в конвеер.

Некрасивый вариант — использование обычного файла. Записал, прочитал.

Есть куда более красивый вариант — это именованные пайпы. Так как у пайпа есть имя, мы можем передать его как файл первой программе, а потом передать содержимое другой.

Пайп в файловой системе выглядит так:

(акцент на букву ‘p’ первым символом).

Как это работает? Фактически, fifo aka named pipe — это «обыкновенный pipe», примерно такой, который кодируется палкой «|». Однако, у него есть ИМЯ и это имя можно указывать всюду, где требуется файл.

Программа, которая пишет в именованный пайп, ведёт себя с ним как с файлом. Т.е. пишет себе и пишет. Программа, которая читает — аналогично. Читает себе и читает. Чтение идёт в том порядке, как была осуществлена запись (FIFO — first in first out). Положения относительно пайпа (слева/справа) определяются тем, кто читает, а кто пишет.

Важная же особенность пайпа — способность тормознуть читающую/пищущую программу, если буфер пуст/переполнен.

Рассмотрим на примере чтения. Программа пишет в пайп одну строчку в секунду. Программа чтения читает с максимально возможной скоростью. Программа «вычитывает» всё, что было в буфере, и посылает следующий запрос. Ядро этот запрос задерживает до того момента, пока не появятся данные. Таким образом, можно не париться с синхронизацией — появятся данные, программа-обработчик получит управление обратно из read() и обработает очередную порцию данных.

Источник

C Programming with Al Jensen

Free Tutorials on Introductory C Programming.

Named Pipes in Linux C

The mkfifo() function is used to create a named piped in the filesystem. The pipe() system call creates an anonymous pipe that can only be used by related processes. A named pipe, in contrast, can be used by any process, since the pipes are visible in the filesystem.

The mkfifo() call takes two arguments, the first being the pathname of the named pipe that we wish to create, and the second represents the read/write permissions for this pipe. The mkfifo() call returns 0 on success or -1 on error.

If we run this program twice (or more) the return value will be -1, as the named pipe will have already been created. We can see the error mkfifo() has encountered via errno, which is defined in the errno.h header file.

The mode_t permissions are delineated in the sys/stat.h header file.

To remove a FIFO, we can use the unlink() function which is included in the unistd.h header file.

Once a named pipe has been created, we can read and write to it just as with any other file.

Источник

Example of Named Pipes

How do I write a simple—bare minimum needed for it to work—test application that illustrates how to use IPC/Named Pipes?

For example, how would one write a console application where Program 1 says «Hello World» to Program 2 and Program 2 receives message and replies «Roger That» to Program 1.

4 Answers 4

For someone who is new to IPC and Named Pipes, I found the following NuGet package to be a great help.

To use first install the package:

Then an example server (copied from the link):

Best thing about it for me is that unlike the accepted answer here it supports multiple clients talking to a single server.

You can actually write to a named pipe using its name, btw.

Open a command shell as Administrator to get around the default «Access is denied» error:

Linux dotnet core doesn’t support namedpipes!

Try TcpListener if you deploy to Linux

This NamedPipe Client/Server code round trips a byte to a server.

  • Client writes byte
  • Server reads byte
  • Server writes byte
  • Client reads byte

Источник

Знакомство с межпроцессным взаимодействием на Linux

Межпроцессное взаимодействие (Inter-process communication (IPC)) — это набор методов для обмена данными между потоками процессов. Процессы могут быть запущены как на одном и том же компьютере, так и на разных, соединенных сетью. IPC бывают нескольких типов: «сигнал», «сокет», «семафор», «файл», «сообщение»…

Отступление: данная статья является учебной и расчитана на людей, только еще вступающих на путь системного программирования. Ее главный замысел — познакомиться с различными способами взаимодействия между процессами на POSIX-совместимой ОС.

Именованный канал

Для передачи сообщений можно использовать механизмы сокетов, каналов, D-bus и другие технологии. Про сокеты на каждом углу можно почитать, а про D-bus отдельную статью написать. Поэтому я решил остановиться на малоозвученных технологиях отвечающих стандартам POSIX и привести рабочие примеры.

Рассмотрим передачу сообщений по именованным каналам. Схематично передача выглядит так:

Для создания именованных каналов будем использовать функцию, mkfifo():

Примечание: mode используется в сочетании с текущим значением umask следующим образом: (mode &

umask). Результатом этой операции и будет новое значение umask для создаваемого нами файла. По этой причине мы используем 0777 (S_IRWXO | S_IRWXG | S_IRWXU), чтобы не затирать ни один бит текущей маски.

Как только файл создан, любой процесс может открыть этот файл для чтения или записи также, как открывает обычный файл. Однако, для корректного использования файла, необходимо открыть его одновременно двумя процессами/потоками, одним для получение данных (чтение файла), другим на передачу (запись в файл).

В случае успешного создания FIFO файла, mkfifo() возвращает 0 (нуль). В случае каких либо ошибок, функция возвращает -1 и выставляет код ошибки в переменную errno.

Типичные ошибки, которые могут возникнуть во время создания канала:

  • EACCES — нет прав на запуск (execute) в одной из директорий в пути pathname
  • EEXIST — файл pathname уже существует, даже если файл — символическая ссылка
  • ENOENT — не существует какой-либо директории, упомянутой в pathname, либо является битой ссылкой
  • ENOSPC — нет места для создания нового файла
  • ENOTDIR — одна из директорий, упомянутых в pathname, на самом деле не является таковой
  • EROFS — попытка создать FIFO файл на файловой системе «только-на-чтение»

Чтение и запись в созданный файл производится с помощью функций read() и write().

Пример

mkfifo.c

Мы открываем файл только для чтения (O_RDONLY). И могли бы использовать O_NONBLOCK модификатор, предназначенный специально для FIFO файлов, чтобы не ждать когда с другой стороны файл откроют для записи. Но в приведенном коде такой способ неудобен.

Компилируем программу, затем запускаем ее:

В соседнем терминальном окне выполняем:

В результате мы увидим следующий вывод от программы:

Разделяемая память

Следующий тип межпроцессного взаимодействия — разделяемая память (shared memory). Схематично изобразим ее как некую именованную область в памяти, к которой обращаются одновременно два процесса:

Для выделения разделяемой памяти будем использовать POSIX функцию shm_open():

Функция возвращает файловый дескриптор, который связан с объектом памяти. Этот дескриптор в дальнейшем можно использовать другими функциями (к примеру, mmap() или mprotect()).

Целостность объекта памяти сохраняется, включая все данные связанные с ним, до тех пор пока объект не отсоединен/удален (shm_unlink()). Это означает, что любой процесс может получить доступ к нашему объекту памяти (если он знает его имя) до тех пор, пока явно в одном из процессов мы не вызовем shm_unlink().

Переменная oflag является побитовым «ИЛИ» следующих флагов:

  • O_RDONLY — открыть только с правами на чтение
  • O_RDWR — открыть с правами на чтение и запись
  • O_CREAT — если объект уже существует, то от флага никакого эффекта. Иначе, объект создается и для него выставляются права доступа в соответствии с mode.
  • O_EXCL — установка этого флага в сочетании с O_CREATE приведет к возврату функцией shm_open ошибки, если сегмент общей памяти уже существует.

Как задается значение параметра mode подробно описано в предыдущем параграфе «передача сообщений».

После создания общего объекта памяти, мы задаем размер разделяемой памяти вызовом ftruncate(). На входе у функции файловый дескриптор нашего объекта и необходимый нам размер.

Пример

Следующий код демонстрирует создание, изменение и удаление разделяемой памяти. Так же показывается как после создания разделяемой памяти, программа выходит, но при следующем же запуске мы можем получить к ней доступ, пока не выполнен shm_unlink().

shm_open.c

После создания объекта памяти мы установили нужный нам размер shared memory вызовом ftruncate(). Затем мы получили доступ к разделяемой памяти при помощи mmap(). (Вообще говоря, даже с помощью самого вызова mmap() можно создать разделяемую память. Но отличие вызова shm_open() в том, что память будет оставаться выделенной до момента удаления или перезагрузки компьютера.)

Компилировать код на этот раз нужно с опцией -lrt:

Смотрим что получилось:

Аргумент «create» в нашей программе мы используем как для создания разделенной памяти, так и для изменения ее содержимого.

Зная имя объекта памяти, мы можем менять содержимое разделяемой памяти. Но стоит нам вызвать shm_unlink(), как память перестает быть нам доступна и shm_open() без параметра O_CREATE возвращает ошибку «No such file or directory».

Семафор

Семафор — самый часто употребляемый метод для синхронизации потоков и для контролирования одновременного доступа множеством потоков/процессов к общей памяти (к примеру, глобальной переменной). Взаимодействие между процессами в случае с семафорами заключается в том, что процессы работают с одним и тем же набором данных и корректируют свое поведение в зависимости от этих данных.

Есть два типа семафоров:

  1. семафор со счетчиком (counting semaphore), определяющий лимит ресурсов для процессов, получающих доступ к ним
  2. бинарный семафор (binary semaphore), имеющий два состояния «0» или «1» (чаще: «занят» или «не занят»)

Рассмотрим оба типа семафоров.

Семафор со счетчиком

Смысл семафора со счетчиком в том, чтобы дать доступ к какому-то ресурсу только определенному количеству процессов. Остальные будут ждать в очереди, когда ресурс освободится.

Итак, для реализации семафоров будем использовать POSIX функцию sem_open():

В функцию для создания семафора мы передаем имя семафора, построенное по определенным правилам и управляющие флаги. Таким образом у нас получится именованный семафор.
Имя семафора строится следующим образом: в начале идет символ «/» (косая черта), а следом латинские символы. Символ «косая черта» при этом больше не должен применяться. Длина имени семафора может быть вплоть до 251 знака.

Если нам необходимо создать семафор, то передается управляющий флаг O_CREATE. Чтобы начать использовать уже существующий семафор, то oflag равняется нулю. Если вместе с флагом O_CREATE передать флаг O_EXCL, то функция sem_open() вернет ошибку, в случае если семафор с указанным именем уже существует.

Параметр mode задает права доступа таким же образом, как это объяснено в предыдущих главах. А переменной value инициализируется начальное значение семафора. Оба параметра mode и value игнорируются в случае, когда семафор с указанным именем уже существует, а sem_open() вызван вместе с флагом O_CREATE.

Для быстрого открытия существующего семафора используем конструкцию:
, где указываются только имя семафора и управляющий флаг.

Пример семафора со счетчиком

Рассмотрим пример использования семафора для синхронизации процессов. В нашем примере один процесс увеличивает значение семафора и ждет, когда второй сбросит его, чтобы продолжить дальнейшее выполнение.

sem_open.c

В одной консоли запускаем:

В соседней консоли запускаем:

Бинарный семафор

Вместо бинарного семафора, для которого так же используется функция sem_open, я рассмотрю гораздо чаще употребляемый семафор, называемый «мьютекс» (mutex).

Мьютекс по существу является тем же самым, чем является бинарный семафор (т.е. семафор с двумя состояниями: «занят» и «не занят»). Но термин «mutex» чаще используется чтобы описать схему, которая предохраняет два процесса от одновременного использования общих данных/переменных. В то время как термин «бинарный семафор» чаще употребляется для описания конструкции, которая ограничивает доступ к одному ресурсу. То есть бинарный семафор используют там, где один процесс «занимает» семафор, а другой его «освобождает». В то время как мьютекс освобождается тем же процессом/потоком, который занял его.

Без мьютекса не обойтись в написании, к примеру базы данных, к которой доступ могут иметь множество клиентов.

Для использования мьютекса необходимо вызвать функцию pthread_mutex_init():

Функция инициализирует мьютекс (перемнную mutex) аттрибутом mutexattr. Если mutexattr равен NULL, то мьютекс инициализируется значением по умолчанию. В случае успешного выполнения функции (код возрата 0), мьютекс считается инициализированным и «свободным».

Типичные ошибки, которые могут возникнуть:

  • EAGAIN — недостаточно необходимых ресурсов (кроме памяти) для инициализации мьютекса
  • ENOMEM — недостаточно памяти
  • EPERM — нет прав для выполнения операции
  • EBUSY — попытка инициализировать мьютекс, который уже был инициализирован, но не унечтожен
  • EINVAL — значение mutexattr не валидно

Чтобы занять или освободить мьютекс, используем функции:

Функция pthread_mutex_lock(), если mutex еще не занят, то занимает его, становится его обладателем и сразу же выходит. Если мьютекс занят, то блокирует дальнейшее выполнение процесса и ждет освобождения мьютекса.
Функция pthread_mutex_trylock() идентична по поведению функции pthread_mutex_lock(), с одним исключением — она не блокирует процесс, если mutex занят, а возвращает EBUSY код.
Фунция pthread_mutex_unlock() освобождает занятый мьютекс.

Коды возврата для pthread_mutex_lock():

  • EINVAL — mutex неправильно инициализирован
  • EDEADLK — мьютекс уже занят текущим процессом

Коды возврата для pthread_mutex_trylock():

  • EBUSY — мьютекс уже занят
  • EINVAL — мьютекс неправильно инициализирован

Коды возврата для pthread_mutex_unlock():

  • EINVAL — мьютекс неправильно инициализирован
  • EPERM — вызывающий процесс не является обладателем мьютекса

Пример mutex

mutex.c

Данный пример демонстрирует совместный доступ двух потоков к общей переменной. Один поток (первый поток) в автоматическом режиме постоянно увеличивает переменную counter на единицу, при этом занимая эту переменную на целую секунду. Этот первый поток дает второму доступ к переменной count только на 10 миллисекунд, затем снова занимает ее на секунду. Во втором потоке предлагается ввести новое значение для переменной с терминала.

Если бы мы не использовали технологию «мьютекс», то какое значение было бы в глобальной переменной, при одновременном доступе двух потоков, нам не известно. Так же во время запуска становится очевидна разница между pthread_mutex_lock() и pthread_mutex_trylock().

Компилировать код нужно с дополнительным параметром -lpthread:

Запускаем и меняем значение переменной просто вводя новое значение в терминальном окне:

Вместо заключения

В следующих статьях я хочу рассмотреть технологии d-bus и RPC. Если есть интерес, дайте знать.
Спасибо.

UPD: Обновил 3-ю главу про семафоры. Добавил подглаву про мьютекс.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

  • Лучшие стратегии на mac os
  • Лучшие почтовые клиенты для os mac
  • Лучшие квесты для mac os
  • Лучшие игры под mac os
  • Лучшие видеоредакторы для mac os